已知首项为
的等比数列
的前
项和为
, 且
成等差数列.
(Ⅰ) 求数列
的通项公式;
(Ⅱ) 证明
.
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,
时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,
和
的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设
(弧度),试用
来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
已知的展开式的二项式系数之和为
,且展开式中含
项的系数为
.⑴求
的值;⑵求
展开式中含
项的系数.
已知函数的最小正周期为
.
⑴求函数的对称轴方程;⑵设
,
,求
的值.
已知,命题
,命题
.⑴若命题
为真命题,求实数
的取值范围;⑵若命题
为真命题,命题
为假命题,求实数
的取值范围.
已知椭圆G:过点
,
,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.