在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为
m,
(1)求关于
的解析式;
(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).
已知分别是
的三个内角
的对边,
.
(1)求角的大小;
(2)求函数的值域.
对于函数若存在
,使得
成立,则称
为
的不动点.
已知
(1)当时,求函数
的不动点;
(2)若对任意实数,函数
恒有两个相异的不动点,求
的取值范围;
(3)在(2)的条件下,若图象上
、
两点的横坐标是函数
的不动点,且
、
两点关于直线
对称,求
的最小值.
在平面直角坐标系中,已知圆
和圆
.
(1)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)设为平面上的点,满足:存在过点
的无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点
的坐标.
如图,已知在四棱锥中,底面
是矩形,
平面
,
、
分别是
、
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若与平面
所成角为
,且
,求点
到平面
的距离.