游客
题文

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

设数列{bn}满足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2n}是等差数列;
(3)设数列{Tn}满足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在实数pq,对任意n∈N*都有pT1T2T3+…+Tnq成立,试求qp的最小值.

已知函数f(x)=x2-(1+2a)xaln x(a为常数).
(1)当a=-1时,求曲线yf(x)在x=1处切线的方程;
(2)当a>0时,讨论函数yf(x)在区间(0,1)上的单调性,并写出相应的单调区间.

已知椭圆C=1(ab>0)上任一点P到两个焦点的距离的和为2P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1y1),B(x2y2).
(1)若(O为坐标原点),求|y1y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QAQB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数yf(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y+2是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y作为奖励函数模型,试确定最小的正整数a的值.

如图,在四棱锥PABCD中,PA⊥底面ABCDACCD,∠DAC=60°,ABBCACEPD的中点,FED的中点.

(1)求证:平面PAC⊥平面PCD
(2)求证:CF∥平面BAE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号