某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求高三(1)班全体女生的人数;
(2)求分数在之间的女生人数;并计算频率分布直方图中
间的矩形的高;
(3)若要从分数在之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.
已知等差数列的前n项和为
,
。
(1)求的通项
;
(2)数列为等比数列,
,求
的前8项和
。
已知,
,分别求
、
及
的范围。
已知焦点在轴,顶点在原点的抛物线
经过点P(2,2),以
上一点
为圆心的圆过定点
(0,1),记
为圆
与
轴的两个交点.
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试判断
是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记
,
,求
的最大值.
已知函数.
(1)若,解方程
;
(2)若函数在
上单调递增,求实数
的取值范围;
(3)若且不等式
对一切实数
恒成立,求
的取值范围
如图,在直三棱柱中,
,
,点
是
的中点,
(1)求证:∥平面
;
(2)设点在线段
上,
,且使直线
和平面
所成的角的正弦值为
,求
的值.