(本小题满分12分)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第
行第
个障碍物(从左至右)上顶点的概率为
.
(Ⅰ)求,
的值,并猜想
的表达式(不必证明);
(Ⅱ)已知,设小球遇到第6行第
个障碍物(从左至右)上顶点时,
得到的分数为,试求
的分布列及数学期望.
【2015高考山东,文20】设函数.已知曲线
在点
处的切线与直线
平行.
(Ⅰ)求的值;
(Ⅱ)是否存在自然数,使得方程
在
内存在唯一的根?如果存在,求出
;如果不存在,请说明理由;
(Ⅲ)设函数(
表示,
中的较小值),求
的最大值.
【2015高考湖北,文21】设函数,
的定义域均为
,且
是奇函数,
是偶函数,
,其中e为自然对数的底数.
(Ⅰ)求,
的解析式,并证明:当
时,
,
;
(Ⅱ)设,
,证明:当
时,
.
【2015高考广东,文21】(本小题满分14分)设为实数,函数
.
(1)若,求
的取值范围;
(2)讨论的单调性;
(3)当时,讨论
在区间
内的零点个数.
【2015高考福建,文22】已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)证明:当时,
;
(Ⅲ)确定实数的所有可能取值,使得存在
,当
时,恒有
.
【2015高考北京,文19】(本小题满分13分)设函数,
.
(Ⅰ)求的单调区间和极值;
(Ⅱ)证明:若存在零点,则
在区间
上仅有一个零点.