游客
题文

【2015高考福建,文22】已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)证明:当时,
(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设集合.
(1)当1时,求集合
(2)当时,求的取值范围.

已知函数,其中角的终边经过点,且.
(1)求的值;
(2)求上的单调减区间.

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是
(1)求双曲线的方程;
(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号