已知一次函数的图像经过点(—2,-2)和点(2,4)
(1)求这个函数的解析式;
(2)求这个函数的图像与y轴的交点坐标。
如图,抛物线 与 轴交于 , 两点,与 轴的正半轴交于点 ,其顶点为 .
(1)写出 , 两点的坐标(用含 的式子表示);
(2)设 ,求 的值;
(3)当 是直角三角形时,求对应抛物线的解析式.
如图,在菱形 中,点 在对角线 上,且 , 是 的外接圆.
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.
(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;
(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?
在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:
频率分布表
阅读时间 (小时) |
频数 (人 |
频率 |
|
18 |
0.12 |
|
|
|
|
45 |
0.3 |
|
36 |
|
|
21 |
0.14 |
合计 |
|
1 |
(1)填空: , , , ;
(2)将频数分布直方图补充完整(画图后请标注相应的频数);
(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.
如图,一次函数 的图象与反比例函数 的图象交于 , 两点,且点 的横坐标为3.
(1)求反比例函数的解析式;
(2)求点 的坐标.