某中学2012年通过“废品回收”活动筹集钱款资助山区贫困中、小学生共23名,资助一名中学生的学习费用需a元,一名小学生的学习费用需b元,各年级学生筹款数额及用其恰好资助中,小学生人数的部分情况如下表:
年级 |
筹款数额(元) |
资助贫困中学生人数(名) |
资助贫困小学生人数(名) |
初一年级 |
4000 |
2 |
4 |
初二年级 |
4200 |
3 |
3 |
初三年级 |
7400 |
|
|
(1)求a,b的值;
(2)初三年级学生筹集的款项解决了其余贫困中小学生的学习费用,求出初三年级学生资助的贫困中、小学生人数。
(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC
的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理
由.
(6分)先化简,再求值.
(-
)÷
,其中x=
+1.
如图1,△ABC中,AB=AC=5cm,BC=6cm,边长为2cm的菱形DEFG两边DG、DE分别在AC、AB上.若菱形DEFG以1cm/s的速度沿射线AC方向平移.
(1)经过▲秒菱形DEFG的顶点F恰好在BC上;
(2)求菱形DEFG的面积;
(3)设菱形DEFG与△ABC的重合部分为Scm2,菱形DEFG平移的时间为t秒.求S与t的函数关系式.
(8分)A、B两
地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的
,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小
时)之间的函数关系如图2所示.
(1)求客、货两车的速度;
(2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式;
(3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.