游客
题文

天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

 
优秀
非优秀
合计
甲班
10
 
 
乙班
 
30
 
    合计
 
 
110

(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:


0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵,其中,若点在矩阵的变换下得到点
(Ⅰ)求实数a的值;(Ⅱ)求矩阵的特征值及其对应的特征向量.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线的极坐标方程为,圆的参数方程为
(其中为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆上的点到直线的距离的最小值.

(本小题满分14分)
已知.
(Ⅰ)当时,求的单调区间;
(Ⅱ)求在点处的切线与直线及曲线所围成的封闭图形的面积;
(Ⅲ)是否存在实数,使的极大值为3?若存在,求出的值,若不存在,请说明理由.

(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范

(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.
某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热
层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小?并求最小值。

(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号