游客
题文

某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:

赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;
从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.

科目 数学   题型 解答题   难度 较易
知识点: 误差估计
登录免费查看答案和解析
相关试题

已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求证:E、F、D、B共面;
(2)求点A1到平面的BDEF的距离;
(3)求直线A1D与平面BDEF所成的角.

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

已知正方体ABCDA1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角DBC1C的大小;
(Ⅲ)异面直线B1D1BC1之间的距离.

在四棱锥PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBCAB=BC=aAD=2a,且PA⊥底面ABCDPD与底面成30°角.
(1)若AEPDE为垂足,求证:BEPD
(2)求异面直线AECD所成角的余弦值.

已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号