为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
|
高茎 |
矮茎 |
合计 |
圆粒 |
11 |
19 |
30 |
皱粒 |
13 |
7 |
20 |
合计 |
24 |
26 |
50 |
(1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
P(K2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
,其中
)
已知椭圆具有性质:若是椭圆
:
且
为常数
上关于原点对称的两点,点
是椭圆上的任意一点,若直线
和
的斜率都存在,并分别记为
,
,那么
与
之积是与点
位置无关的定值
.
试对双曲线且
为常数
写出类似的性质,并加以证明.
为了提高产品的年产量,某企业拟在2013年进行技术改革.经调查测算,产品当年的产量万件与投入技术改革费用
万元(
)满足
(
为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定收入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的
倍(生产成本包括固定投入和再投入两部分资金).
(Ⅰ)试确定的值,并将2013年该产品的利润
万元表示为技术改革费用
万元的函数(利润=销售金额―生产成本―技术改革费用);
(Ⅱ)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?
已知定义域为的函数
是奇函数.
(Ⅰ)求实数的值;(Ⅱ)解关于
的不等式
.
设命题p:函数的定义域为R;命题q:不等式
对任意
恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.
已知集合,集合
,集合
.
(Ⅰ)设全集,求
;(Ⅱ)若
,求实数
的取值范围.