游客
题文

已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分15分)
已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆相交于两点为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

(本小题满分14分)
如图,在四棱锥中,底面为平行四边形,平面在棱

(Ⅰ)当时,求证平面
(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.

(本小题满分14分)
已知数列的前n项和满足:为常数,
(Ⅰ)求的通项公式;
(Ⅱ)设,若数列为等比数列,求的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,,数列的前n项和为.
求证:

(本题满分14分)
已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.
(Ⅰ)求的解析式;
(Ⅱ)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.

业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为.设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号