已知函数.
(Ⅰ)求函数的极大值.
(Ⅱ)求证:存在,使
;
(Ⅲ)对于函数与
定义域内的任意实数x,若存在常数k,b,使得
和
都成立,则称直线
为函数
与
的分界线.试探究函数
与
是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。
(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD
如图,在梯形ABCD中,AB∥CD,,
,平面
平面
,四边形
是矩形,
,点
在线段
上。
(1)求证:平面
;
(2)当为何值时,
∥平面
?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。
【改编】在正四棱柱中,已知底面
的边长为2,点P是
的中点,且
.
(1)求的长;
(2)求点到平面
的距离.
【原创】(1),已知:,且满足
,求
的最小值;
(2),已知:,且满足
,求
的最大值.
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.
(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.