游客
题文

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).

(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG﹣GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA﹣AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

先化简,其中x满足x2﹣5x﹣6=0.

(1)计算:(﹣1﹣4sin60°++(3﹣π)0
(2)求不等式组的整数解.

如图1,在平面直角坐标系中,正方形OABC的顶点A和C分别在x轴和y轴正半轴上,点B坐标为(3,3),抛物线y=﹣x2+bx+c过点A、C,交x轴负半轴于点D,与BC边的另一个交点为E,抛物线的顶点为M,对称轴交x轴于点N.

(1)求抛物线的函数关系式;
(2)点P在直线MN上,求当PE+PA的值最小时点P的坐标;
(3)如图2,探索在x轴是否存在一点F,使∠CFO=∠CDO﹣∠CAO?若存在,求点F的坐标;不存在,说明理由;
(4)将抛物线沿y轴方向平移m个单位后,顶点为Q,若QO平分∠CQN,求点Q的坐标.

如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交坐标轴于点A和B,点M(a,0)在x轴正半轴上,以M为圆心,MO长为半径画⊙M.

(1)当点M在线段OA上时
①若BM平分∠OBA(如图1),求证:直线AB与⊙M相切;
②若⊙M于直线AB相交于点C、D(如图2),试用含a的代数式表示CD2
(2)若⊙M于直线AB相交于点C、D,且∠CMD=120°,求a的值.

如图,已知A、B两点的坐标分别为A(0,2)B(﹣2,0),直线AB与反比例函数y=的图象交于点C和点D(1,a)

(1)求直线AB和反比例函数的函数关系式;
(2)求∠ACO的度数;
(3)将△OBC绕点O顺时针旋转α角(0°<α<90°),得到△OB1C1,当α为多少度时OC1⊥AB,并求此时线段AB1的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号