如图,在四棱锥中,
⊥底面
,四边形
是直角梯形,
⊥
,
∥
,
.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)若二面角的余弦值为
,求
.
设Sn为等差数列{an}的前n项和.(n∈N*).
(Ⅰ)若数列{an}单调递增,且a2是a1、a5的等比中项,证明:
(Ⅱ)设{an}的首项为a1,公差为d,且,问是否存在正常数c,使
对任意自然数n都成立,若存在,求出c(用d表示);若不存在,说明理由.
已知等比数列及等差数列
,其中
,公差
,将这两个数列对应项相加得到一个新的数列1,1,2,…,求这个新数列的前10项之和
设等差数列的前n项和为
;设
,问
是否可能为一与n无关的常数?若不存在,说明理由.若存在,求出所有这样的数列的通项公式.
已知数列成等差数列,
表示它的前
项和,且
,
.
⑴求数列的通项公式
;
⑵数列中,从第几项开始(含此项)以后各项均为负数?
、已知数列的前
项和
满足
.
(1)写出数列的前三项
;
(2)求证数列为等比数列,并求出
的通项公式.