设为抛物线
(
)的焦点,
为该抛物线上三点,若
,且
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(
,
)其中
,过点F作斜率为
的直线与抛物线交于
、
两点,
、
两点的横坐标均不为
,连结
、
并延长交抛物线于
、
两点,设直线
的斜率为
.若
,求
的值.
(本小题满分12分)设.
(Ⅰ)求最大值及相应
值;
(Ⅱ)锐角中,满足
.求
取值范围.
(本小题满分12分)
等差数列中,前
项和为
,且
.
(Ⅰ)求通项公式;
(Ⅱ)设,求数列
前
项的和
.
(本题满分14分)
已知点及圆
:
.
(Ⅰ)若直线过点
且与圆心
的距离为1,求直线
的方程;
(Ⅱ)设过直线
与圆
交于
、
两点,当
时,求以
为直径的圆的方程;
(Ⅲ)设直线与圆
交于
,
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
(本题满分12分)
如图,在四棱锥中,平面
平面
,
,
是等边三角形,已知
,
.
(Ⅰ)设是
上的一点,证明:平面
平面
;
(Ⅱ)求四棱锥的体积.
(本题满分12分)
已知二次函数满足
且
.
(Ⅰ)求的解析式;
(Ⅱ)当时,不等式:
恒成立,求实数
的范围.