定义域为的函数
,其导函数为
.若对
,均有
,则称函数
为
上的梦想函数.
(Ⅰ)已知函数,试判断
是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数(
,
)为其定义域上的梦想函数,求
的取值范围;
(Ⅲ)已知函数(
,
)为其定义域上的梦想函数,求
的最大整数值.
(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:
.
(1)直线的参数方程化为极坐标方程;
(2)求直线的曲线
交点的极坐标(
)
(本小题满分10分)选修4-1:几何证明选讲如图:的直径
的延长线于弦CD的延长线相交于点P,E为
上一点,
交
于点F.
(1)求证:四点共圆;
(2)求证:.
(本小题满分12分)已知函数是自然对数的底数,
.
(1)求函数的单调递增区间;
(2)若为整数,
,且当
时,
恒成立,其中
为
的导函数,求
的最大值.
(本小题满分12分)已知椭圆经过点
,离心率为
.
(1)求椭圆的方程;
(2)不垂直与坐标轴的直线与椭圆
交于
两点,线段
的垂直平分线交y轴于点
,若
,求直线
的方程.
(本小题满分12分)已知平面
.
(1)求证:平面
;
(2)M为线段CP上的点,当时,求二面角
的余弦值.