(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列{an}满足,
(其中λ≠0且λ≠–1,n∈N*),
为数列{an}的前
项和.
(1) 若,求
的值;
(2) 求数列{an}的通项公式;
(3) 当时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.
已知直线是过点,方向向量为
的直线,圆方程
(1)求直线的参数方程
(2)设直线与圆相交于两点,求
的值
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.
(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.
已知函数
(1)若,试确定函数
的单调区间;
(2)若且对任意
,
恒成立,试确定实数
的取值范围;
(3)设函数,求证:
已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=
.
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=
|NE|,求cos∠MSN的值.
如图:四边形是梯形,
,
,三角形
是等边三角形,且平面
平面
,
,
,
(1)求证:平面
;
(2)求二面角的余弦值.