数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,.(Ⅰ)求;(Ⅱ)猜想,并用数学归纳法证明.
(本小题满分10分)如图,已知点,直线,为平面内的动点,过作的垂线,垂足为,且. (1)求动点的轨迹的方程; (2)设是上的任意一点,过作轨迹的切线,切点为、. ①求证:、、三点的横坐标成等差数列; ②若,,求的值.
(本小题满分10分)已知数列满足,. (1)求证:数列是等比数列; (2)设,求证:当,时,.
(选修4-5:不等式选讲) 设均为正数,.求证:.
(选修4-4:坐标系与参数方程) 在极坐标系中,设圆经过点,圆心是直线与极轴的交点,求圆的 极坐标方程.
(选修4-2:矩阵与变换) 若点在矩阵对应变换的作用下得到点,求矩阵的逆矩阵.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号