已知无穷数列中,
、
、
、
构成首项为2,公差为-2的等差数列,
、
、
、
,构成首项为
,公比为
的等比数列,其中
,
.
(1)当,
,时,求数列
的通项公式;
(2)若对任意的,都有
成立.
①当时,求
的值;
②记数列的前
项和为
.判断是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
已知函数f(x)=x2﹣2ax+a+2,
(1)若f(x)≤0的解集A⊆[0,3],求实数a的取值范围;
(2)若g(x)=f(x)+|x2﹣1|在区间(0,3)内有两个零点x1,x2(x1<x2),求实数a的取值范围.
设a,b,c分别是△ABC中角A,B,C的对边
(1)若AB边上的中线CM=AB=2,求a+b的最大值;
(2)若AB边上的高h=,求
的取值范围.
在△ABC中,.
(1)求的值;
(2)当△ABC的面积最大时,求∠A的大小.
已知函数,且给定条件p:“
”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)﹣m|<2“且p是q的充分条件,求实数m的取值范围.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益和投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?