某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.
(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;
(Ⅱ)在甲、乙两队全体成绩为“优秀”的运动员的跳高成绩的平均数和方差;
(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,
求所选取两名运动员均来自甲队的概率.
(本小题满分12分)
如图,在三棱锥中,
底面ABC,
,
AP="AC," 点,
分别在棱
上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
;
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
(本小题满分12分)
已知函数。
(Ⅰ)求的值域;
(Ⅱ)若(x>0)的图象与直线
交点的横坐标由小到大依次是
,
,…,
,求数列
的前
项的和。
(本小题满分14分)
已知函数,
.(其中
为自然对数的底数),
(Ⅰ)设曲线在
处的切线与直线
垂直,求
的值;
(Ⅱ)若对于任意实数≥0,
恒成立,试确定实数
的取值范围;
(Ⅲ)当时,是否存在实数
,使
曲线C:
在点
处的切线与轴垂直?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
已知椭圆的左右焦点为
,抛物线C:
以F2为焦点且与椭圆相交于点M
、N
,直线
与抛物线C相切
(Ⅰ)求抛物线C的方程和点M、N的坐标;
(Ⅱ)求椭圆的方程和离心率.
(本小题满分14分)
如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,
M为AB中点,D为PB中点,且△PMB为正三角形。
(Ⅰ)求证:DM∥平面APC;
(Ⅱ)求证:平面ABC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.