已知函数f(x)=-
alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤
≤φ′(
).
如图,正棱柱ABC-A1B1C1的所有棱长都为4,D为CC1中点,
(1)求证:AB1⊥平面A1BD;
(2)求二面角A-A1D-B的大小。
设数列{an}满足a1 = 3,an+1 = 2an+n·2n+1+3n,n≥1。
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项之和Sn。
如图,PA垂直于矩形ABCD所在的平面,PD=PA,E、F分别是AB、PD的中点。
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD。
已知⊿ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;
(2)若a=2,求⊿ABC周长的最大值。