游客
题文

如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.

(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;
(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

如图,已知一次函数 y = kx + b 的图象与反比例函数 y = m x 的图象交于点 A ( 3 , a ) ,点 B ( 14 - 2 a , 2 )

(1)求反比例函数的表达式;

(2)若一次函数图象与 y 轴交于点 C ,点 D 为点 C 关于原点 O 的对称点,求 ΔACD 的面积.

(1)化简: ( a - 1 + 1 a - 3 ) ÷ a 2 - 4 a - 3

(2)解不等式: x + 1 3 - 1 < x - 1 4

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

已知 O 1 的半径为 r 1 O 2 的半径为 r 2 .以 O 1 为圆心,以 r 1 + r 2 的长为半径画弧,再以线段 O 1 O 2 的中点 P 为圆心,以 1 2 O 1 O 2 的长为半径画弧,两弧交于点 A ,连接 O 1 A O 2 A O 1 A O 1 于点 B ,过点 B O 2 A 的平行线 BC O 1 O 2 于点 C

(1)求证: BC O 2 的切线;

(2)若 r 1 = 2 r 2 = 1 O 1 O 2 = 6 ,求阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号