游客
题文

如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作。苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售。直接出售每吨获利4000元;加工成罐头出售每吨获利10000元。采摘的工人每人可以采摘苹果0.4吨 ;加工罐头的工人每人可加工0.3吨。设有x名工人进行苹果采摘,全部售出后 ,总利润为y元 .
(1)求y与x的函数关系式。
(2)如何分配工人才能活力最大

自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如:等 。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
(1)若a>0,b>0,则>0;若a<0,b<0,则>0;
(2)若a>0,b<0,则<0 ;若a<0,b>0,则<0。
反之:(1)若>0则
(2)若<0,则__________或_____________.
根据上述规律,求不等式的解集。

现有甲、乙两个容器,分别装有进水管和出水管,两容器的进出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进出水管,打开和关闭水管的时间忽略不计。容器中的水量y(升)与乙容器注水时间x之间的关系如图所示:

(1)求甲容器的进、出水速度.
(2)甲容器进、出水管都关闭后,是否存在两容器的水量相等。若存在,求出此时的时间.
(3)若使两容器第12分钟时水量相等,则乙容器6分钟后进水速度应变为多少?

如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D, 连接BE,过点O作OC∥BE交切线DE于点C,连接AC .

(1)求证:AC是⊙O的切线 ;
(2)若BD=OB=4,求弦AE的长.

在平面直角坐标系xoy中,直线y="-x+3" 与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号