有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速
和车长
的关系满足:
(
为正的常数),假定车身长为
,当车速为
时,车距为2.66个车身长.
写出车距关于车速
的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
设
为实数,函数
.
(1)若
,求
的取值范围;
(2)讨论
的单调性;
(3)当
时,讨论
在区间
内的零点个数.
已知过原点的动直线
与圆
相交于不同的两点
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
设数列
的前
项和为
,
.已知
,且当
时,
.
(1)求
的值;
(2)证明:
为等比数列;
(3)求数列
的通项公式.
如图,三角形
所在的平面与长方形
所在的平面垂直,
,
,
.
(1)证明:
平面
;
(2)证明:
;
(3)求点
到平面
的距离.
某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的
方法抽取 户居民,则月平均用电量在
的用户中应抽取多少户?