已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为
万元,且
(Ⅰ)写出年利润(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大
(本大题满分12分)从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
,第二组
,第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
以上(含
)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
,事件
,求
(本大题满分12分)四棱锥中,
⊥底面
,
,
,
.
(Ⅰ)求证:⊥平面
;
(Ⅱ)若侧棱上的点
满足
,求三棱锥
的体积.
(本大题满分12分)在中,角
为锐角,已知内角
、
、
所对的边分别为
、
、
,向量
且向量
共线.
(1)求角的大小;
(2)如果,且
,求
的值.
已知函数,其中
.
(1)当a=3,b=-1时,求函数的最小值;
(2)当a>0,且a为常数时,若函数对任意的
,总有
成立,试用a表示出b的取值范围.
已知抛物线,准线与
轴的交点为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)如图,,过点
的直线
与抛物线
交于不同的两点
,AQ与BQ分别与抛物线
交于点
C,D,设AB,DC的斜率分别为,
的斜率分别为
,问:是否存在常数
,使得
,
若存在,求出的值,若不存在,说明理由.