游客
题文

在⊿ABC中,角A,B,C的对边分别为A,b,C,且满足(2A-C)CosB=bCosC.
(Ⅰ)求角B的大小;
(Ⅱ)已知函数f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=10,S6=72.若bn=an-30,求数列{bn}的前n项和的最小值.

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列的前n项和,求Tn.

已知数列{an}的前n项和为Sn,且a1=1,nan+1=(n+2)Sn (n∈N*).
(1)求证:数列为等比数列;
(2)求数列{an}的通项公式及前n项和Sn
(3)若数列{bn}满足:b1=,=(n∈N*),求数列{bn}的通项公式.

已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式;
(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

将函数f(x)=sinx·sin(x+2)·sin(x+3)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an} (n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)设bn=sinansinan+1sinan+2,求证:bn=(n=1,2,3,…).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号