
(1)若
,点
在函数
的图像上,求数列
的前
项和
;
(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2-
,求数列
的前n项和Tn.
如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=
.
(1)求cos∠CAD的值;
(2)若cos∠BAD=
,sin∠CBA=
,求BC的长.
一条斜率为1的直线
与离心率为
的椭圆
:
(
)交于
两点,直线
与
轴交于点
,且
,
,求直线
和椭圆
的方程.
已知
,设命题
函数
在R上单调递增;命题
不等式
对
恒成立。若
为假,
为真,求
的取值范围.
如图,已知
是椭圆
上且位于第一象限的一点,
是椭圆的右焦点,
是椭圆的中心,
是椭圆的上顶点,
是直线
(
是椭圆的半焦距)与
轴的交点,若
,
,试求椭圆的离心率的平方的值.