如图,已知是椭圆
上且位于第一象限的一点,
是椭圆的右焦点,
是椭圆的中心,
是椭圆的上顶点,
是直线
(
是椭圆的半焦距)与
轴的交点,若
,
,试求椭圆的离心率的平方的值.
如图,在底面是正方形的四棱锥中,
面
,
交
于点
,
是
中点,
为
上一点.
⑴求证:;
⑵确定点在线段
上的位置,使
//平面
,并说明理由.
⑶当二面角的大小为
时,求
与底面
所成角的正切值.
(本题满分12分)
2010年上海世博会上展馆与展馆
位于观光路的同侧,在观光路上相距
千米的
两点分别测得
,(
在同一平面内),求展馆
之间的距离.
(本小题满分12分)
已知函数是
的导函数.
(1)若,求
的值.
(2)求函数(
)的单调增区间。
(本小题满分12分)已知函数(
).
(1)试讨论在区间
上的单调性;
(2)当时,曲线
上总存在相异两点
,
,使得曲线
在点
,
处的切线互相平行,求证:
.
(本小题满分12分)如图,直角梯形与等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求证:;
(2)求直线与平面
所成角的正弦值;
(3)线段上是否存在点
,使
// 平面
?若存在,求出
;若不存在,说明理由.