如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
2009年推出一款新型家用轿车,购买时费用为14.4万元,每年应交付保险费、 养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(1)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的最大值.
已知函数
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边
所对的角,若a=
f(A)=1,求
的最大值.
设两个非零向量、不共线
(1)若,求证:A、B、D三点共线;
(2)试确定实数k的值,使和
共线.
(本小题满分12分)已知在中,内角
的对边分别是
,已知
,
.
(Ⅰ)若的面积等于
,求
;
(Ⅱ)若,求
的面积.