一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为
。如果
=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果
=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为
(单位:元),求
的分布列及数学期望。
设正方形ABCD的外接圆方程为x2+y2–6x+a=0(a<9),C、D点所在直线l的斜率为,求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率。
已知圆C:x
+y
+2x-6y+1=0,圆C
:x
+y
-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.
a为何值时,圆: x2+y2-2ax+4y+(a2-5)=0和圆
: x2+y2+2x-2ay+(a2-3)=0相交
已知圆C:(x-1) +(y-2)
=25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)证明:无论m取什么实数,L与圆恒交于两点.
(2)求直线被圆C截得的弦长最小时L的方程.
已知圆x2+y2=8,定点P(4,0),问过P点的直线斜率在什么范围内取值时,这条直线与已知圆(1)相切 ,(2)相交, (3)相离?