如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.
(Ⅰ)求证:AG∥平面PEC;
(Ⅱ)求点G到平面PEC的距离.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
(本小题满分10分)选修4—1:几何证明选讲
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证
(2)求的值.
(本小题满分12分)已知函数,其中常数
.
(1)当时,求函数
的极大值;
(2)试讨论在区间
上的单调性;
(3)当时,曲线
上总存在相异两点
,
,使得曲线
在点
处的切线互相平行,求
的取值范围.
已知椭圆的对称中心为原点
,焦点在
轴上,左右焦点分别为
和
,且
,点
在该椭圆上.
(1)求椭圆的方程;
(2)过的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切圆的方程.
已知四棱锥P-ABCD,底面ABCD是、边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.