省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(1)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随
机选2人,那么至少有一人是“高个子”的概率是多少?
(2)从两队的“高个子”中各随机抽取1人,求恰有1人身高达到190cm的概率.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.
(1)证明:MF⊥BD;
(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n项和.
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan Atan C.
(1)求证:a,b,c成等比数列;
(2)若a=1,c=2,求△ABC的面积S.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-sin A)cos B=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.