已知,函数
.
(1)当时,写出函数
的单调递增区间;
(2)当时,求函数
在区间[1,2]上的最小值;
(3)设,函数
在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
(本小题满分12分)年中秋、国庆长假期间,由于国家实行
座及以下小型车辆高速公路免费政策,导致在长假期间高速公路出现拥堵现象。长假过后,据有关数据显示,某高速收费路口从上午
点到中午
点,车辆通过该收费站的用时
(分钟)与车辆到达该收费站的时刻
之间的函数关系式可近似地用以下函数给出:
y=
求从上午点到中午
点,通过该收费站用时最多的时刻。
(本小题满分12分)已知的两边长分别为
,
,且O为
外接圆的圆心.(注:
,
)
(1)若外接圆O的半径为,且角B为钝角,求BC边的长;
(2)求的值.
(本小题满分12分)
命题实数x满足
(其中
),命题
实数
满足
(1)若,且
为真,求实数
的取值范围;
(2)若是
的充分不必要条件,求实数a的取值范围.
(本小题满分10分)
函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)设α∈(0,2π),f()=2,求α的值.
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。