某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数![]() |
2 |
3 |
4 |
5 |
加工的时间![]() |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于
的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
参考公式:回归直线,其中
.
(本小题满分14分)已知等差数列的公差为
,前
项和为
,且
,
,
成等比数列.
(1)求数列的通项公式;
(2)令,求数列
的前
项和
.
(本小题满分13分)已知椭圆:
的焦距为
,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆
的左焦点,
为直线
上任意一点,过
作
的垂线交椭圆
于点
,
,证明:
平分线段
(其中
为坐标原点),
(本小题满分13分)如图甲,在平面四边形中,已知
,
,
,
,现将四边形
沿
折起,使平面
平面
(如图乙),设点
,
分别为棱
,
的中点.
(1)证明平面
;
(2)求与平面
所成角的正弦值;
(3)求二面角的余弦值.
(本小题满分13分)设的内角
,
,
所对边的长分别是
,
,
,且
,
,
.
(1)求的值;
(2)求的值.
(本小题满分13分)某校书法兴趣组有名男同学
,
,
和
名女同学
,
,
,其年级情况如下表:
一年级 |
二年级 |
三年级 |
|
男同学 |
![]() |
![]() |
![]() |
女同学 |
![]() |
![]() |
![]() |
现从这名同学中随机选出
人参加书法比赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设为事件“选出的
人来自不同年级且性别相同”,求事件
发生的概率.