已知圆A:与
轴负半轴交于B点,过B的弦BE与
轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求
的值;⑵求
的值.
已知函数,数列
满足:
.
(Ⅰ)求证:;
(Ⅱ)求数列的通项公式;
(Ⅲ)求证不等式:
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过
、
、
三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于
、
的任意一点,
,当
内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆
交于
、
两点,证明直线
与直线
的交点在直线
上.
已知函数
(1)若函数的最小值是
,且
,
求
的值:
(2)若,且
在区间
恒成立,试求
取范围;