已知函数.
(1)求证不论为何实数,
总是增函数;
(2)确定的值,使
为奇函数;
(3)当为奇函数时,求
的值域.
如图所示的多面体中,是菱形,
是矩形,
面
,
.
(1)求证:.
(2)若
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
设函数
(1)求函数的值域和函数的单调递增区间;
(2)当,且
时,求
的值.
已知关于的函数
,其导函数为
.记函数
在区间
上的最大值为
.
(1) 如果函数在
处有极值
,试确定
的值;
(2) 若,证明对任意的
,都有
;
(3) 若对任意的
恒成立,试求
的最大值.
椭圆的离心率为
,其左焦点到点
的距离为
.
(1) 求椭圆的标准方程;
(2) 若直线与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.