(如图1)在平面四边形中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记为接下来被邀请到的6个人中接受挑战的人数,求
的分布列和均值(数学期望).
若数列满足:存在正整数
,对于任意正整数
都有
成立,则称数列
为周期数列,周期为
.已知数列
满足
,
则下列结论中错误的是().
A.若![]() ![]() |
B.若![]() ![]() |
C.![]() ![]() ![]() ![]() ![]() |
D.![]() ![]() ![]() |
已知函数.
(1)若函数满足,且在定义域内
恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数
的取值范围;
(3)当时,试比较
与
的大小.
已知圆,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆的方程;
(2)若存在直线l:y=kx,使得直线与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段AB上,且
,求圆M的半径r的取值范围.
在几何体ABCDE中,AB=AD=BC=CD=2,,且
平面
,平面
平面
.
(1)当平面
时,求
的长;
(2)当时,求二面角
的大小.