(如图1)在平面四边形中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
已知函数
(I)当a=0时,解不等式;
(II)若存在x∈R,使得,f(x)≤g(x)成立,求实数a的取值范围.
在直角坐标系xoy中,圆C的参数方程为以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程
(I)求圆心的极坐标。
(II)若圆C上点到直线l的最大距离为3,求r的值。
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=,圆O的半径为3,求OA的长.
设函数
(I)若函数f(x)在x=1处与直线y=相切,
①求实数a,b的值;
②求函数f(x)在[土,e]上的最大值.
(II)当b=0时,若不等式f(x)≥m+x对所有的都成立,求实数m的取值范围,
已知椭圆右顶点与右焦点的距离为
,短轴长为
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为求直线AB的方程。