成都市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的则被淘汰。若现有500人参加测试,学生成绩的频率分布直方图如下:
(I)求获得参赛资格的人数;
(II)根据频率直方图,估算这500名学生测试的平均成绩;
(III)若知识竞赛分初赛和复赛,在初赛中每人最多有3次选题答题的机会,累计答对2题或答错2题即终止,答对2题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲通过初赛的概率.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
【改编】已知函数,
R
,
是函数
的一个零点.
(1)求的值,并求函数
的对称轴及单调递增区间;
(2)若,且
,
,求
的值.
(本小题满分14分)已知函数,
, 其中,
是自然对数的底数.函数
,
.
(Ⅰ)求的最小值;
(Ⅱ)将的全部零点按照从小到大的顺序排成数列
,求证:
(1),其中
;
(2).
(本小题满分13分)如图,设为抛物线
的焦点,
是抛物线上一定点,其
坐为,
为线段
的垂直平分线上一点,且点
到抛物线的准线
的距离为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.
(本小题满分12分)设数列的前
项和为
,点
在直线
上.
(Ⅰ)求数列的通项公式;
(Ⅱ)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
,并求使
成立的正整数
的最大值.