如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM. ②连接BE并延长交AM于点F.
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.
先化简,后求值:,其中
=-4.
如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
求证:(1)BC=AD;
(2)△OAB是等腰三角形.
从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:
(1)抽取1名,恰好是男生;
(2)抽取2名,恰好是1名女生和1名男生.
如图,在平面直角坐标系中,直线:y=-2x+b (b≥0)的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b= 时,直线:y=-2x+b (b≥0)经过圆心M:
当b= 时,直线:y=-2x+b(b≥0)与OM相切:
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).
设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,
如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?
请说明理由.