如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,是
的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求出该几何体的体积.
一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).
(1)假定y与x之间有线性相关关系,求y对x的回归直线方程;
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒.(精确到1转/秒)
某市统计1994~2004年在校中学生每年高考考入大学的百分比,把农村、县镇、城市分开统计,为了便于计算,把1994年编号为0,1995年编号为1,…,2004年编号为10,如果把每年考入大学的百分比作为统计变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:
城市:;
县镇:;
农村:.
(1)在同一坐标系中作出三条回归直线;
(2)对于农村学生来讲,系数等于0.42意味着什么?
(3)在这一阶段,哪里的大学入学率增长最快?
已知函数的定义域为
,最大值为4.试求函数
的最小正周期和最值.
(本小题满分12分)
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
(本小题满分12分)
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。