游客
题文

对于函数
(1)探索函数的单调性,并用单调性定义证明;
(2)是否存在实数使函数为奇函数?

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

在平面直角坐标系内有两个定点和动点P,坐标分别为,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为
(1)求曲线C的方程;(2)求的值。

如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.
(1) 设点分有向线段所成的比为,证明:;
(2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.

已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).
(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.

如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的一条弦AC交双曲线于E,设,当时,求双曲线的离心率e的取值范围.

为直角坐标平面内x轴.y轴正方向上的单位向量,若,且
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号