设等差数列
的前
项和为
,满足:
.递增的等比数列
前
项和为
,满足:
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设数列
对
,均有
成立,求
.
已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆
相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由. 
已知动圆
与
轴相切,且过点
.
⑴求动圆圆心
的轨迹
方程;
⑵设
、
为曲线
上两点,
,
,求点
横坐标的取值范围.
解不等式:
设数列
的各项都是正数,
,
,
.
⑴求数列
的通项公式;⑵求数列
的通项公式;
⑶求证:
.
设函数
,
.
⑴当
时,求函数
图象上的点到直线
距离的最小值;
⑵是否存在正实数
,使
对一切正实数
都成立?若存在,求出
的取值范围;若不存在,请说明理由.