(本小题满分13分)如图,在梯形中,
平面
,且
(1)求异面直线与
间的距离;
(2)求直线与平面
所成的角;
(3)已知是线段
上的动点,若二面角
的
大小为,求AF.
(本小题满分12分)号码为1、2、3、4、5、6的六个大小相同的球,放入编号为1、2、3、4、5、6的六个盒子中,每个盒子只能放一个球.
(1)若1、2号球要放入号码是相邻数字的两个盒子中,则不同的放法有多少种?
(2)若3、4号球要放入编号不比自己号码小的盒子中,则不同的放法有多少种?
(3)若1号球不放入1号盒中,6号球不放入6号盒中,则不同的放法有多少种?
(本小题满分12分)如图,四边形是边长为
的正方形,
、
分别是边
、
上的点(M不与A、D重合),且
,
交
于点
,沿
将正方形折成直二面角
(1)当平行移动时,
的大小是否发生变化?试说明理由;
(2)当
在怎样的位置时,
、
两点间的距离最小?并求出这个最小值.
(本小题满分12分)已知展开式的二项式系数之和比
展开式的二项式系数之和小
.
(1)求;
(2)求的第二项的系数和
的第
项.
(本小题满分14分)设函数(a、b、c、d∈R)图象关于原点对称,且x=1时,
取极小值
.
(Ⅰ)求函数的解析式;
(Ⅱ)若对任意的,恒有
成立,求
的取值范围;
(Ⅲ)当时,函数
图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论;
(IV)设表示的曲线为G,过点
作曲线G的切线
,求
的方程.