已知向量,
,其中ω>0,函数
,若
相邻两对称轴间的距离为
.
(1)求ω的值;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,,△ABC的面积S=5
,b=4,,求a.
(本题12分)
某校高二年级的
名学生参加一次科普知识竞赛,然后随机抽取
名学生的成绩进行统计分析.
(1)完成频率分布表;
(2)根据上述数据画出频率分布直方图;
(3)估计这次竞赛成绩在80分以上的学生人数是多少?
(4)估计这次竞赛中成绩的平均分是多少?
(本题8分)
在一个不透明的袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同,现从中一次摸出两个小球.
(1)请写出所有的基本事件;
(2)求摸出的两个小球标注的数字之和为5的概率.
(本小题满分14分)
已知函数
(Ⅰ)求f(x)在[-1,e](e为自然对数的底数)上的最大值;
(Ⅱ)对任意给定的正实数a,曲线y= f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
(本小题满分12分)
已知椭圆的离心率为e=
,且过点(
)
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.
(本小题满分12分)
某企业科研课题组计划投资研发一种新产品,根据分析和预测,能获得10万元~1000万元的投资收益.企业拟制定方案对课题组进行奖励,奖励方案为:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金也不超过投资收益的20%,并用函数y= f(x)模拟这一奖励方案.
(Ⅰ)试写出模拟函数y= f(x)所满足的条件;
(Ⅱ)试分析函数模型y= 4lgx-3是否符合奖励方案的要求?并说明你的理由.