某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为
,当年产量不足80千件时,
(万元).当年产量不小于80千件时,
(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
如图所示,在四棱锥中,
平面
,
,
,
是
的中点,
是
上的点且
,
为△
中
边上的高.
(1)证明:平面
;
(2)若,
,
,求三棱锥
的体积;
(3)证明:平面
.
下图是淮北市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择6月1日至6月15日中的某一天到达该市,并停留2天.
(1)求此人到达当日空气重度污染的概率;
(2)若设是此人停留期间空气质量优良的天数,请分别求当x=0时,x=1时和x=3时的概率值。
(3)由图判断从哪天开始淮北市连续三天的空气质量指数方差最大?(结论不要求证明)
如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
已知函数f(x)=4cos ωx·(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间上的单调性.
设全集.
(1)解关于x的不等式;
(2)记A为(1)中不等式的解集,集合,若
恰有3个元素,求
的取值范围.