已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
如图,游客在景点处下山至
处有两条路径.一条是从
沿直道步行到
,另一条是先从
沿索道乘缆车到
,然后从
沿直道步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
.假设缆车匀速直线运动的速度为
,索道
长为
,经测量
,
.
(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过
分钟,乙步行的速度应控制在什么范围内?
设是首项为
,公差为
的等差数列
,
是其前
项和.
(1)若,
,求数列
的通项公式;
(2)记,
,且
、
、
成等比数列,证明:
.
已知函数和
的图象关于
轴对称,且
.
(1)求函数的解析式;
(2)解不等式.
已知,
,
.
(1)若,求
的值;
(2)设,若
,求
、
的值.
已知中心在原点的双曲线的一个焦点是
,一条渐近线的方程是
。
(1)求双曲线的方程;
(2)若以为斜率的直线
与双曲线
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围。