设函数,其中
.
(I)若函数图象恒过定点P,且点P关于直线
的对称点在
的图象上,求m的值;
(Ⅱ)当时,设
,讨论
的单调性;
(Ⅲ)在(I)的条件下,设,曲线
上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
如图,某市准备在一个湖泊的一侧修建一条直路,另一侧修建一条观光大道,它的前一段
是以
为顶点,
轴为对称轴,开口向右的抛物线的一部分,后一段
是函数
,
时的图象,图象的最高点为
,
,垂足为
.
(1)求函数的解析式;
(2)若在湖泊内修建如图所示的矩形水上乐园,问:点
落在曲线
上何处时,水上乐园的面积最大?
设函数,其中
.
(1)若在
处取得极值,求常数
的值;
(2)设集合,
,若
元素中有唯一的整数,求
的取值范围.
已知函数,其中
(1)写出的奇偶性与单调性(不要求证明);
(2)若函数的定义域为
,求满足不等式
的实数
的取值集合;
(3)当时,
的值恒为负,求
的取值范围.
已知函数.
(1)求的最小正周期;
(2)在中,
分别是
A、
B、
C的对边,若
,
,
的面积为
,求
的值.
设函数的定义域为集合
,函数
的定义域为集合
.(1)求
;(2)若
,
,求实数
的取值范围.