游客
题文

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图,某污水处理厂要在一正方形污水处理池内修建一个三角形隔离区以投放净化物质,其形状为三角形,其中位于边上,位于边上.已知米,,设,记,当越大,则污水净化效果越好.
(1)求关于的函数解析式,并求定义域;
(2)求最大值,并指出等号成立条件?

如图,直三棱柱中,,中点,求直线与平面所成角的大小.(结果用反三角函数值表示)

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为是坐标原点,不经过原点的直线与椭圆交于两不同点.
(1)求椭圆C的方程;
(2) 当时,求面积的最大值;
(3) 若直线的斜率依次成等比数列,求直线的斜率.

本题共有2个小题,第1小题满分6分,第2个小题满分8分。
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在零点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号