游客
题文

已知函数.
(1)若,是否存在,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;
(2)若,求上的单调区间;
(3)已知,,有成立,求的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

(理科)已知椭圆的离心率为,定点,椭圆短轴的端点是,且
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

(文科)给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为

(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明
(ⅱ)求证:线段的长为定值.

(理科)已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.
(Ⅰ)求证:以线段为直径的圆与轴相切;
(Ⅱ)若,,,求的取值范围.

(文科)已知椭圆
(1)求椭圆的离心率.
(2)设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.

(理科)在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为为椭圆的上顶点,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,直线)与椭圆交于两点,且,如图所示.

(ⅰ)证明:
(ⅱ)求四边形的面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号