定义,
,
.
(1)比较与
的大小;
(2)若,证明:
;
(3)设的图象为曲线
,曲线
在
处的切线斜率为
,若
,且存在实数
,使得
,求实数
的取值范围.
设函数,其中向量
,
,
,且
的图象经过点
.(Ⅰ)求实数
的值;(Ⅱ)求函数
的最小值及此时
值的集合.
对于正整数,用
表示
的最大奇因数,如:
,……. 记
,其中
是正整数.
(I)写出,
,
,并归纳猜想
与
N)的关系式;
(II)证明(I)的结论;
(Ⅲ)求的表达式.
已知点,
是平面内一动点,直线
、
斜率之积为
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作直线
与轨迹
交于
两点,线段
的中点为
,求直线
的斜率
的取值范围.
如图1,在直角梯形中,
,
,
,
为线段
的中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(Ⅰ) 求证:平面
;
(Ⅱ) 求二面角的余弦值.
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定
正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(I)求该选手在复赛阶段被淘汰的概率;
(II)设该选手在竞赛中回答问题的个数为,求
的分布列、数学期望和方差.